Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Struct Biol ; 5: 100095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820301

RESUMO

Dihydroneopterin aldolase (DHNA) is essential for folate biosynthesis in microorganisms. Without a counterpart in mammals, DHNA is an attractive target for antimicrobial agents. Helicobacter pylori infection occurs in human stomach of over 50% of the world population, but first-line therapies for the infection are facing rapidly increasing resistance. Novel antibiotics are urgently needed, toward which structural information on potential targets is critical. We have determined the crystal structure of H. pylori DHNA (HpDHNA) in complex with a pterin molecule (HpDHNA:Pterin) at 1.49-Å resolution. The HpDHNA:Pterin complex forms a tetramer in crystal. The tetramer is also observed in solution by dynamic light scattering and confirmed by small-angle X-ray scattering. To date, all but one reported DHNA structures are octameric complexes. As the only exception, ligand-free Mycobacterium tuberculosis DHNA (apo-MtDHNA) forms a tetramer in crystal, but its active sites are only partially formed. In contrast, the tetrameric HpDHNA:Pterin complex has well-formed active sites. Each active site accommodates one pterin molecule, but the exit of active site is blocked by two amino acid residues exhibiting a contact distance of 5.2 â€‹Å. In contrast, the corresponding contact distance in Staphylococcus aureus DHNA (SaDHNA) is twice the size, ranging from 9.8 to 10.5 â€‹Å, for ligand-free enzyme, the substrate complex, the product complex, and an inhibitor complex. This large contact distance indicates that the active site of SaDHNA is wide open. We propose that this isozyme-specific contact distance (ISCD) is a characteristic feature of DHNA active site. Comparative analysis of HpDHNA and SaDHNA structures suggests a fragment-based strategy for the development of isozyme-specific inhibitors.

2.
RNA Biol ; 19(1): 908-915, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35829618

RESUMO

The RNase III family of dsRNA-specific endonucleases is exemplified by prokaryotic RNase III and eukaryotic Rnt1p, Drosha, and Dicer. Structures of Aquifex aeolicus RNase III (AaRNase III) and Saccharomyces cerevisiae Rnt1p (ScRnt1p) show that both enzymes recognize substrates in a sequence-specific manner and propel RNA hydrolysis by two-Mg2+-ion catalysis. Previously, we created an Escherichia coli RNase III variant (EcEEQ) by eliminating the sequence specificity via protein engineering and called it bacterial Dicer for the fact that it produces heterogeneous small interfering RNA cocktails. Here, we present a 1.8-Å crystal structure of a postcleavage complex of EcEEQ, representing a reaction state immediately after the cleavage of scissile bond. The structure not only establishes the structure-and-function relationship of EcEEQ, but also reveals the functional role of a third Mg2+ ion that is involved in RNA hydrolysis by bacterial RNase III. In contrast, the cleavage site assembly of ScRnt1p does not contain a third Mg2+ ion. Instead, it involves two more amino acid side chains conserved among eukaryotic RNase IIIs. We conclude that the EcEEQ structure (this work) represents the cleavage assembly of prokaryotic RNase IIIs and the ScRnt1p structure (PDB: 4OOG), also determined at the postcleavage state, represents the cleavage assembly of eukaryotic RNase IIIs. Together, these two structures provide insights into the reaction trajectory of two-Mg2+-ion catalysis by prokaryotic and eukaryotic RNase III enzymes.


Assuntos
Magnésio/metabolismo , Ribonuclease III , Proteínas de Saccharomyces cerevisiae , Biocatálise , Catálise , RNA de Cadeia Dupla , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
3.
Bioorg Med Chem ; 29: 115847, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199204

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but absent in mammals; therefore, it is an attractive target for developing novel antimicrobial agents. Previously, based on our studies of the structure and mechanism of HPPK, we created first-generation bisubstrate inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed second-generation inhibitors by replacing the phosphate bridge with a linkage that contains a piperidine moiety. Here, we report third-generation inhibitors designed based on the piperidine-containing inhibitor, mimicking the transition state. We synthesized two such inhibitors, characterized their protein-binding and enzyme inhibition properties, and determined their crystal structures in complex with HPPK, advancing the development of such bisubstrate analog inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Piperidinas/farmacologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Difosfotransferases , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Modelos Moleculares , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Pterinas/química , Pterinas/metabolismo , Relação Estrutura-Atividade
4.
FEBS J ; 287(9): 1865-1885, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31679177

RESUMO

Rapid adaptation to environmental changes is crucial for bacterial survival. Almost all bacteria possess a conserved stringent response system to prompt transcriptional and metabolic responses toward stress. The adaptive process relies on alarmones, guanosine pentaphosphate (pppGpp), and tetraphosphate (ppGpp), to regulate global gene expression. The ppGpp is more potent than pppGpp in the regulatory activity, and pppGpp phosphohydrolase (GppA) plays a key role in (p)ppGpp homeostasis. Sharing a similar domain structure, GppA is indistinguishable from exopolyphosphatase (PPX), which mediates the metabolism of cellular inorganic polyphosphate. Here, our phylogenetic analysis of PPX/GppA homologs in bacteria shows a wide distribution with several distinct subfamilies, and our structural and functional analysis of Escherichia coli GppA and Helicobacter pylori PPX/GppA reveals unique properties of each homolog. These results explain how each homolog possesses its distinct functionality.


Assuntos
Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Helicobacter pylori/enzimologia , Helicobacter pylori/metabolismo , Sequência de Aminoácidos , Guanosina Pentafosfato/química , Modelos Moleculares , Estrutura Molecular , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Alinhamento de Sequência
5.
Structure ; 25(2): 353-363, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28111020

RESUMO

Double-stranded RNA (dsRNA)-specific RNase III proteins are required for RNA maturation and gene regulation. The mechanism of prokaryotic RNase IIIs has been well characterized, but how eukaryotic RNase IIIs (exemplified by Rnt1p, Drosha, and Dicer) work is less clear. Recently, we reported the crystal structure of Rnt1p in complex with RNA, revealing a double-ruler mechanism for substrate selection. Here, we present more structures of Rnt1p, either RNA free or RNA bound, featuring two major conformations of the enzyme. Using these structures with existing data, we describe the functional cycle of Rnt1p in five steps, selecting, loading, locking, cleavage, and releasing. We also describe atomic details of the two-Mg2+-ion catalytic mechanism that is applicable to all eukaryotic RNase III enzymes. Overall, our results indicate that substrate selection is achieved independent of cleavage, allowing the recognition of substrates with different structures while preserving the basic mechanism of cleavage.


Assuntos
RNA Helicases DEAD-box/química , Magnésio/química , RNA de Cadeia Dupla/química , Ribonuclease III/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Cátions Bivalentes , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , Humanos , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
6.
J Biol Chem ; 290(39): 23656-69, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26272746

RESUMO

Members of the Swi2/Snf2 (switch/sucrose non-fermentable) family depend on their ATPase activity to mobilize nucleic acid-protein complexes for gene expression. In bacteria, RapA is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein that mediates RNAP recycling during transcription. It is known that the ATPase activity of RapA is stimulated by its interaction with RNAP. It is not known, however, how the RapA-RNAP interaction activates the enzyme. Previously, we determined the crystal structure of RapA. The structure revealed the dynamic nature of its N-terminal domain (Ntd), which prompted us to elucidate the solution structure and activity of both the full-length protein and its Ntd-truncated mutant (RapAΔN). Here, we report the ATPase activity of RapA and RapAΔN in the absence or presence of RNAP and the solution structures of RapA and RapAΔN either ligand-free or in complex with RNAP. Determined by small-angle x-ray scattering, the solution structures reveal a new conformation of RapA, define the binding mode and binding site of RapA on RNAP, and show that the binding sites of RapA and σ(70) on the surface of RNAP largely overlap. We conclude that the ATPase activity of RapA is inhibited by its Ntd but stimulated by RNAP in an allosteric fashion and that the conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. These and previous findings outline the functional cycle of RapA, which increases our understanding of the mechanism and regulation of Swi2/Snf2 proteins in general and of RapA in particular. The new structural information also leads to a hypothetical model of RapA in complex with RNAP immobilized during transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Alostérica , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Conformação Proteica , Espalhamento a Baixo Ângulo , Transcrição Gênica , Difração de Raios X
7.
FEBS J ; 281(18): 4123-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975935

RESUMO

UNLABELLED: Two valid targets for antibiotic development, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS), catalyze consecutive reactions in folate biosynthesis. In Francisella tularensis (Ft), these two activities are contained in a single protein, FtHPPK-DHPS. Although Pemble et al. (PLoS One 5, e14165) determined the structure of FtHPPK-DHPS, they were unable to measure the kinetic parameters of the enzyme. In this study, we elucidated the binding and inhibitory activities of two HPPK inhibitors (HP-18 and HP-26) against FtHPPK-DHPS, determined the structure of FtHPPK-DHPS in complex with HP-26, and measured the kinetic parameters for the dual enzymatic activities of FtHPPK-DHPS. The biochemical analyses showed that HP-18 and HP-26 have significant isozyme selectivity, and that FtHPPK-DHPS is unique in that the catalytic efficiency of its DHPS activity is only 1/260,000 of that of Escherichia coli DHPS. Sequence and structural analyses suggest that HP-26 is an excellent lead for developing therapeutic agents for tularemia, and that the very low DHPS activity is due, at least in part, to the lack of a key residue that interacts with the substrate p-aminobenzoic acid (pABA). A BLAST search of the genomes of ten F. tularensis strains indicated that the bacterium contains a single FtHPPK-DHPS. The marginal DHPS activity and the single copy existence of FtHPPK-DHPS in F. tularensis make this bacterium more vulnerable to DHPS inhibitors. Current sulfa drugs are ineffective against tularemia; new inhibitors targeting the unique pABA-binding pocket may be effective and less subject to resistance because any mutations introducing resistance may make the marginal DHPS activity unable to support the growth of F. tularensis. DATABASE: The coordinates and structure factors have been deposited in the Protein Data Bank under accession code 4PZV.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Francisella tularensis/enzimologia , Complexos Multienzimáticos/química , Sequência de Aminoácidos , Armas Biológicas , Domínio Catalítico , Cristalografia por Raios X , Ácido Fólico/biossíntese , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Ligação Proteica , Estrutura Secundária de Proteína
8.
Annu Rev Genet ; 47: 405-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274754

RESUMO

RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.


Assuntos
Ribonuclease III/fisiologia , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Motivos de Aminoácidos , Bacteriófago lambda/genética , Catálise , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células Eucarióticas/enzimologia , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Óperon , Células Procarióticas/enzimologia , Processamento de Proteína Pós-Traducional , RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Ribossômico/metabolismo , Pequeno RNA não Traduzido/genética , Ribonuclease III/química , Ribonuclease III/classificação , Ribonuclease III/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Viroses/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-20445258

RESUMO

Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 A resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6(1) or P6(5), with unit-cell parameters a = b = 125, c = 54 A.


Assuntos
Proteínas de Bactérias/química , Francisella tularensis/química , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...